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LETTER TO THE EDITOR

Dynamics within metastable states in a mean-field spin
glass

A Barrat, R Burioni and M Mzard

Laboratoire de Physique €brique de I'Ecole Normale Sépeurd, 24 rue Lhomond, 75231
Paris Cedex 05, France

Received 6 December 1995

Abstract. In this letter we present a dynamical study of the structure of metastable states
(corresponding tarap solutions) in a mean-field spin—glass model. After reviewing known
results of the statical approach, we use dynamics: starting from an initial condition thermalized
at a temperature between the statical and the dynamical transition temperatures, we are able to
study the relaxational dynamics within metastable states and we show that they are characterized
by a true breaking of ergodicity and exponential relaxation.

The recent developments in the theory of spin—glass dynamics [1] have made clearer the
similarity of behaviour in spin glasses and in glasses [2, 3]. In this context it seems at the
moment that a certain category of spin glasses, those which are described by a so-called
one-step replica-symmetry breakingsg) transition [4], are good candidate models for a
mean-field description of the glass phase [5, 6]. In these systems the presence of metastable
states generates a purely dynamical transition (which is supposed to be rounded in finite-
dimensional systems [5, 6]) at a temperat@ifdigher than the one obtained within a theory

of static equilibrium,Ts.

The spherical p-spin spin glass introduced in [7, 8] is an interesting example of this
category. It is a simple enough system in which the metastable states can be defined and
studied by thetap method [9]. In this paper we want to provide a better understanding
of these metastable states, using a dynamical point of view. We shall show the existence
of a true ergodicity breaking such that these metastable states, in spite of being excited
states with a finite excitation free energy per spin, are actually dynamically stable even at
temperatures abové;. Note that a connection between dynamics anel approach was
made in [18], for a similar model, but not in the same spirit.

The spherical p-spin spin glass describeseal spinss;, i € {1,..., N} which interact
through the Hamiltonian
H(S) = — Z .],'1 ..... ip S,’l T S,‘p (1)

1<ip<<ip<N

together with the spherical constraint on the spifs;.,s? = N. The couplings are
Gaussian, with zero mean and variangl/ 2N?~1). In the p > 2 case it shows an
interesting spin—glass behaviour, simple enough to allow for detailed analytical treatment.
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In the static approach, one describes the properties of the Boltzmann probability
distribution of this system. The replica method shows the existence of a static transition
with a one-stefrsB at temperaturds [7]. This transition reflects the fact that, beld#y,
the Boltzmann measure is dominated by a few pure states, a scenario which is well known
from the random energy model [10].

Staying within a static framework, theap approach [11, 12] provides some more
insight into the physical nature of this system. T equations can be derived through
a variational principle on the local magnetizations = (s;), from a free energyf ({m;})
which is best written in terms of radial and angular variabieands; (with m; = /gs;),
in the form [11]

. T 1 , _
fmi) =a"?E° (18) = 5 InA = @) = [(p = Da” = pg"* +1] @)
where the angular energy is
E°({8) = - Z Jiremiy Siy -+ -8, - (3)

1<ip < <ip <N

At zero temperature theap states are just unit vectors which minimize the angular energy
E°. There actually exist such states B8P € [E,.i., Ec = —/2(p — 1)/p]. Denoting by

§¢ one zero temperature state, of eneffy it gives rise at finite temperatuf® to oneTAP
statea given by

mi =/q (EQ. T)s} 4
whereg(E, T) is the largest solution of the equation:
_E— . /JE2_E2
a- gyt = r(TESVEZR) ®
p—1

The free energy of this stat¢,,, at temperaturd’, is obtained by inserting in theap free
energy (2) the corresponding values of the angular endifjys EC and of the self-overlap,
q = 4o = q (E2, T). The corresponding energy is

1 -
Eo=q{"EQ — o [(p = Dl — gl +11. ©)

When changing the temperature, one can follow the metastable states which keep the same
angular direction; their order in free energy or energy, at fikets the same as their order in

EC. When raisingl’, a state disappears at a temperafigg(E®) (where equation (5) ceases

to have solutions) Tyax(E®) is a decreasing function df®; the most excited states, with

E° = E., disappear first afjax(Ec), and the lowest afinax(Epin) = Trap. Above Trap, the

only remaining state is the paramagnetic one wite 0 and free energypaa= —1/(47T).

To complete the description of metastable states at any temperature, one only needs the
density of statep (E®) with an angular energ¥®. This has been computed in [12]; the
multiplicity is exponentially large, giving a finite complexity densi}( £°), defined as

0
sAEY) = lim Iogp%) :

N—oo (7)
The complexity at finite temperature is easily deduced from ghisWe shall denote by
Sc(f, T) the logarithm of the number afp states at free energy and temperatur&. The

Boltzmann partition function can then be approximated as the sum ovexrafiolutions:

,_ / " exp(_ =TS, T))) -
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Figure 1. free energy versus temperature; (1) free energy of the paramagnetic solution for
t > t4, frot fOr t < tg; (2) free energy of the lowesip states, with zero temperature energy
emin; (3) free energy of the highesgt states, corresponding t@; (4) an intermediate value of

eo leads to an intermediate value ¢f at any temperature; (5eq(¢); the difference between
curves (5) and (1) gives the complexifySc( feq(t), t).

which can be evaluated at largé by a saddle-point method. At temperatufBs> Ty,
with Ty = /p(p —2P=2(p — 1)1-r/2, the Boltzmann measure is dominated by the
paramagnetic statg = 0. At any T € [Ts, T4], the Boltzmann measure is dominated
by a class offAp solutions, those of free energy = foo(T). Because of their extensive
complexity, this gives for the total equilibrium free energy:

fiot=—TIN(Z) = fe(T) — T Sc(feo(T), T) . 9

The computation offq is easily done [7, 14]. One finds th#ty is equal tothe paramagnetic

free energy in this range. Belo® the lowest lyingTAP states dominate the Boltzmann
measure, leading ®sB. The situation is summarized in figure 1. Compared to a usual phase
transition, the situation is complicated by the existence of a finite complexity. Actually we
see that between the two transition temperatdtesnd Ty, the situation is unclear: the total
equilibrium free energy seems to get two equal contributions, from the paramagnetic state
and from a bunch ofAP solutions with non-zerg. One can wonder if there is a phase
coexistence, or simply a problem of double counting intheapproach. This issue, which

is an important one if one aims at understanding the finite-dimensional behaviour of this
type of systems [6], can in fact be clarified within a dynamical approach as we now show.
Let us also mention that some purely static approaches also carry relevant information on
related issues [13, 19].

The TAP structure of states is usually not explored dynamically: indeed, the usually
studied out of equilibrium dynamics of the spherical p-spin model starts from a random
configuration, and never goes below the threshold corresponding to theTppsalutions.

This process has been studied in [15]: an interesting aging behaviour has been found at
temperature§’ < Ty, but the energy density of the system only goes asymptotically to one
of the highestrap states (the threshold states with angular engf§y= E.). Hence, it is
impossible to explore@ap states via this kind of dynamics.

Here we will use a different approach for the dynamics [18, 19], where we start from
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a spin configuration which is picked up from a Boltzmann distribution at temperatuyre
and then let the system relax at temperatlireWe shall concentrate on the case where
T’ € [Ts, T4, which means that our initial configuration will belong to thwr states with
free energyfeq(7T'). This will lead to the study of the relaxatianside one TAP state.

The relaxational dynamics at temperatdrés given by the Langevin equation:

ds()  oH
dr - as;

where H is the Hamiltonian (1)u is the Lagrange multiplier implementing the spherical
constraint, and; is a Gaussian white noise with zero mean and variafiteThe dynamics
is described by the behaviour of two-times correlation and response functions defined by

— n(®)si(t) + n; (1) (10)

N 1 X a(si(0)

1
C.r) = Y (ss@))  orar) = N D ah: (1)
i=1 =1

(11)

where(-) is @ mean over the thermal noise, and an overline denotes a mean over the coupling
constants.

Using the usual field-theoretical techniques for out of equilibrium dynamics [16], in
the large limit, it is possible to study the dynamics at temperatlirestarting from a
Boltzmann measure at temperatdte In order to implement this initial sample dependent-
measure, it is necessary to introduce replicas [17-19] and to write dynamical equations
for two-times overlaps between replic&@s”(z, t') = (sa(t)s*(t')), a and b being replica
indices. The equations obtained differ from the usual out of equilibrium ones (corresponding
to 7' = oo [15]) by terms involving a coupling to the initial configuration, i@€%(t, 0).
Besides, as noted in [19], the time evolution respects the initial replica-symmetrissor
structure of theC“?, i.e. the static replica structure describing equilibriunTat

For the p-spin model withl'” > Ts the initial condition is replica symmetric, with
C?(0, 0) = 8,,. Therefore, at all times we can writg?’ (¢, ') = C(t, t')8,,. The obtained
equations for the correlation and response functions read[19], foTasyTs, andt > ¢':

t 2 _
1u(t) =/ ds [pch—l(t,s) - p(pzl)C”_z(t,s):| rit,s)+T
0

p -1
_ P er1¢,00 a-ca,0
€7, 0) (1= C(1,0)
or(t,t') _ NP pa ,
5 = n(r,t) ﬁc 0 r@,t)
-1 t
—%/ ds CP2(1, s)r(t, s)(r (1, 1) — r(s, 1)) (12)
0
aC , ’ t
W0 e+ P / ds 731, $)r (7' )
ot 2 0
_l t
—% / ds CP2(1, 5)r(t, $)(C(1, 1) — C(s, 1)
0
_ P eriq 0 ca, )y + Lo, 0) €, 0).
27 ’ T o ’ ’
Let us examine the situation first fof = 7T’ (this case was studied in [18];

supposinga priori equilibrium dynamics, they were able to connect it with theee
approach): since we start at equilibrium, we expect equilibrium dynamics satisfying both
time translation invariancer{l) and the fluctuation dissipation theorerD(): C(z,t") =
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Ceg(t — 1), r(t, 1) = req(t — ') With req(7) = —%%qu. Equations (12) reduce, with this
ansatz, to a single equation for the evolution(f(z):

0Ceq(T) p ’ - 0Ceq(ut)

—, = —tooCeq(T) — oT /0 du Cé’q Yo —w o (13)

whereu,, = T, andCeq(0) = 1. Above Ty, this equation describes the relaxation within
the paramagnetic state, with lim., Ceq(r) = 0. Below Ty, the condition of dynamical

stability BC;(;(I) < 0 leads to a non zero limify, for Ceq(r) [8]; this limit is given by the
largest solution of
p _
572 Ck 1-Cx) =1 (14)

(the other non-zero solution is unstable with respect to the dynamics (13)). This value is
precisely the self-overlap of the TAP states reflecting the statics Af i.e. with free energy
feq(T). This means that, for temperatures between the statical and the dynamical transition
temperatures, the thermalized system is trapped inside atate, and not in a paramagnetic
state, for whichC., would be zero (as fofl" > Ty). We can also exclude the possibility
of a coexistence, which would lead to some intermediate value: the paramagnetic state has
disappeared &by, and the Gibbs state is formed by the bunchra# solutions having the
suitable free energyey(T), and a finite complexity density.

To get further insight, always starting from a thermalized configuration at temperature
T’ € [Ts, Ty), we now study the dynamics at a temperatiirdifferent from7’. In our study
of the dynamical equations (12), we have found numerically (using the type of algorithm
developed in [20]) and analytically that after a short transient the system reaches a stationary
regime wheraTl andrDT hold (see figure 2). The possibility of such a situation has already
been conjectured in [19], together with an interesting connection to the static approaches
developed in [13, 19].

0.95 E

09 }F ~

0.85 E

0.8 -

C(t,t), Cegft-t')

0.75 ~

07 + F

086 | S ]

Figure 2. p = 3 model, withTs ~ 0.586, Tq ~ 0.612; numerical integration of equations (12)
for T = 0.605, T = 0.6; we plot C(¢, 0) versusr (full curve), andC(z,t") versust — ¢’ for

t' = 6, 12, 18, 24 (symbols); the dotted curve is the numerical integration of (15), and the dotted
curve is the value o€, obtained by (16).
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In order to study this solution analytically, we introduce as previol&ly(t), req(t),

Coo = liML o Ceg(T), oo = liMopu(r), and! = lim,_,, C(z,0), and obtain the
equation:
9Ceq(T) . P p-1 P pa
e = (e O Sl G
p[F _ p p
+§/(; du CLy L) Feg(T —u) — ﬁcgjo + 2T/lp' (15)

Besides,u, Co and! satisfy the following set of equations, obtained by takihg= O,
t — o0 in (12), andr — oo in (15):
p

P p -1
=T+ - CPY1- .
n t o CLH L= Co) = 1P A = D)
pa_ 20T
p(l_ Coo)
p 2
TCo = 2T/zp(l —Co) + ﬁcgo 11— Cy)? (16)

and the energy reached dynamically at large timeB is= %(Cc’,’O -1 - %

It is then straightforward to check that the overldp and the energy, are identical
to the values characteristic of certainP states at the temperatufe These states are
precisely those obtained by following the equilibriump states at temperatut® (which
pick up a certain valu&?, of the angular energy) to temperatufe by keeping the same
direction in§ space, but changing the overlap frarae?,, T') to q(ES,, T).

From equation (15), it is possible to show that the relaxationCgf(r) is of the
form t=3/2exp(—t/10). The relaxation timery can also be computed, and has a quite
complicated expression that we do not reproduce here. It diverges for the highesates
(corresponding taE® = E.). Of course, this exponential relaxation can only happen as
long as the followedrap solution still exists at temperaturg: if T becomes larger than
Tmax(E%), we observe a fast relaxation to the paramagnetic state,@yith=7 = 0.

We have thus shown that thep solutions are real states, corresponding to a full
breaking of ergodicity: starting within aap state (which can be achieved by our trick of
using thermalized initial conditions at a temperat@ig one relaxes within this state with
a finite relaxation rate, and one can even follow this state when changing the temperature.
Besides, the Gibbs measure below the dynamical transition is made of a superposition of
TAP states, which are different ergodic components, totally separated from each other in the
dynamical evolution. The paramagnetic solution, valid ab®yedisappears aly. Note
that the way in which this occurs is not clear, and we leave this open question, which is
crucial for a better understanding of aging dynamics, for future work. Soxpestates
exist as independent ergodic components even at temperdturggy, Trap]. They are not
seen in the usual dynamics because they are difficult to find: starting from random initial
conditions one stays in the big paramagnetic ergodic component. If one succeeds in starting
within a TAP state, one stays within this state even by rising the temperature dhqbat
below theTnax Of this state). One should notice that the usual dynamics at a temperature
below Ty, starting from a random configuration, only leads to a ‘weak ergodicity breaking’
[21, 15], where the self-overlap vanishes at very large time differences (much larger than
the waiting time). This is explained [15, 22] by the fact that the system, which was initially
in the (infinite temperature) paramagnetic state, does not findamgtate in a finite time,
but stays at energy density(D (going to zero as goes to infinity) above the threshold. In
contrast, there is no sign of aging when one starts withinrastate. This is in agreement
with some recent intuitive scenarios for aging [22, 23].



Letter to the Editor L87

It is a pleasure to thank J Kurchan and R Monasson for some very useful discussions and
suggestions.

References

[1] For a short introduction and references, seézistd M Lecture at Statphys 19 Glassy dynan®esprint
LPTENS 95/35
[2] Franz S and Hertz J 1998hys. Rev. Lett74 2114
[3] Bouchaud J P, Cugliandolo L, Kurchan J ancé®ard M Mode-coupling approximations, glass theory and
disordered systemBreprint LPTENS 95/47, condmat 9511042
[4] Mézard M, Parisi G and VirasorM A 1987 Spin—Glass Theory and BeyorfSingapore: World Scientific)
[5] Kirkpatrick T R and Thirumalai D 198Phys. RevB 36 5388
Kirkpatrick T R, Thirumalai D and WolyreP G 198%hys. RevA 40 1045 and references therein
[6] Parisi G Slow dynamics in glass&seprint condmat-9412034
[7] Crisanti A and Sommers H-J 1992 Phys.B 87 341
[8] Crisanti A, Horner H and Sommers H-J 1993Phys.B 92 257
[9] Thouless D J, AndersoP W and PalmeR G 1977Phil. Mag. 35 597
[10] Derrida B 1980Phys. Rev. Let45 79
Gross D and Mzard M 1984Nucl. PhysB 240431
[11] Kurchan J, Parisi G and VirasoM A 1993 J. Physique I3 1819
[12] Crisanti A and Sommers H-J 1995 Physique |5 805
[13] Monasson R 199®hys. Rev. Let{r5 2847
[14] Monasson R in preparation
[15] Cugliandob L F and Kurchan J 199Bhys. Rev. Letfr1 173
[16] Sompolinsky H and Zippelius A 198Rhys. Rev. Let#7 359; 1982Phys. RevB 25 6860
[17] Houghton A, Jain S and YognA P 1983Phys. RevB 28 290
[18] Thirumalai D and Kirkpatrik T R 1988Phys. RevB 38 4881
Kirkpatrick T R and Thirumalai D 1989. Phys. A: Math. Gern22 L149
[19] Franz S and Parisi G 1995 Physique 15 1401
[20] Franz S and Mzard M 1994Physica210A 48
[21] Bouchad J P 1992]. Physique 12 1705
[22] Kurchan J and Laloux L 1995 Phase space geometry and slow dynBnejgent condmat 9510079
[23] Barrat A and Mezard M 1995). Physique 15 941



