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LETTER TO THE EDITOR

Dynamics within metastable states in a mean-field spin
glass

A Barrat, R Burioni and M Ḿezard
Laboratoire de Physique Théorique de l’Ecole Normale Supérieure†, 24 rue Lhomond, 75231
Paris Cedex 05, France

Received 6 December 1995

Abstract. In this letter we present a dynamical study of the structure of metastable states
(corresponding toTAP solutions) in a mean-field spin–glass model. After reviewing known
results of the statical approach, we use dynamics: starting from an initial condition thermalized
at a temperature between the statical and the dynamical transition temperatures, we are able to
study the relaxational dynamics within metastable states and we show that they are characterized
by a true breaking of ergodicity and exponential relaxation.

The recent developments in the theory of spin–glass dynamics [1] have made clearer the
similarity of behaviour in spin glasses and in glasses [2, 3]. In this context it seems at the
moment that a certain category of spin glasses, those which are described by a so-called
one-step replica-symmetry breaking (RSB) transition [4], are good candidate models for a
mean-field description of the glass phase [5, 6]. In these systems the presence of metastable
states generates a purely dynamical transition (which is supposed to be rounded in finite-
dimensional systems [5, 6]) at a temperatureTd higher than the one obtained within a theory
of static equilibrium,Ts.

The spherical p-spin spin glass introduced in [7, 8] is an interesting example of this
category. It is a simple enough system in which the metastable states can be defined and
studied by theTAP method [9]. In this paper we want to provide a better understanding
of these metastable states, using a dynamical point of view. We shall show the existence
of a true ergodicity breaking such that these metastable states, in spite of being excited
states with a finite excitation free energy per spin, are actually dynamically stable even at
temperatures aboveTd. Note that a connection between dynamics andTAP approach was
made in [18], for a similar model, but not in the same spirit.

The spherical p-spin spin glass describesN real spinssi, i ∈ {1, . . . , N} which interact
through the Hamiltonian

H(s) = −
∑

16i1<···<ip6N

Ji1,...,ip si1 . . . sip (1)

together with the spherical constraint on the spins:
∑N

i=1 s2
i = N. The couplings are

Gaussian, with zero mean and variancep!/(2Np−1). In the p > 2 case it shows an
interesting spin–glass behaviour, simple enough to allow for detailed analytical treatment.
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In the static approach, one describes the properties of the Boltzmann probability
distribution of this system. The replica method shows the existence of a static transition
with a one-stepRSB at temperatureTs [7]. This transition reflects the fact that, belowTs,
the Boltzmann measure is dominated by a few pure states, a scenario which is well known
from the random energy model [10].

Staying within a static framework, theTAP approach [11, 12] provides some more
insight into the physical nature of this system. TheTAP equations can be derived through
a variational principle on the local magnetizationsmi = 〈si〉, from a free energyf ({mi})
which is best written in terms of radial and angular variables,q and ŝi (with mi = √

qŝi),
in the form [11]

f ({mi}) = qp/2E0
({ŝi}

) − T

2
ln(1 − q) − 1

4T
[(p − 1)qp − pqp−1 + 1] (2)

where the angular energy is

E0
({ŝi}

) ≡ −
∑

16i1<···<ip6N

Ji1,...,ip ŝi1 . . . ŝip . (3)

At zero temperature theTAP states are just unit vectors which minimize the angular energy
E0. There actually exist such states forE0 ∈ [Emin, Ec = −√

2(p − 1)/p]. Denoting by
ŝα
i one zero temperature state, of energyE0

α, it gives rise at finite temperatureT to oneTAP

stateα given by

mα
i =

√
q

(
E0

α, T
)
ŝα
i (4)

whereq(E, T ) is the largest solution of the equation:

(1 − q)qp/2−1 = T

(−E − √
E2 − E2

c

p − 1

)
. (5)

The free energy of this state,fα, at temperatureT , is obtained by inserting in theTAP free
energy (2) the corresponding values of the angular energy,E0 = E0

α and of the self-overlap,
q = qα ≡ q

(
E0

α, T
)
. The corresponding energy is

Eα = qp/2
α E0

α − 1

2T
[(p − 1)qp

α − pqp−1
α + 1] . (6)

When changing the temperature, one can follow the metastable states which keep the same
angular direction; their order in free energy or energy, at fixedT , is the same as their order in
E0. When raisingT , a state disappears at a temperatureTmax(E

0) (where equation (5) ceases
to have solutions).Tmax(E

0) is a decreasing function ofE0; the most excited states, with
E0 = Ec, disappear first atTmax(Ec), and the lowest atTmax(Emin) ≡ TTAP. AboveTTAP, the
only remaining state is the paramagnetic one withq = 0 and free energyFpara = −1/(4T ).

To complete the description of metastable states at any temperature, one only needs the
density of statesρ(E0) with an angular energyE0. This has been computed in [12]; the
multiplicity is exponentially large, giving a finite complexity densitys0

c(E0), defined as

s0
c(E0) = lim

N→∞
logρ(E0)

N
. (7)

The complexity at finite temperature is easily deduced from thiss0
c . We shall denote by

Sc(f, T ) the logarithm of the number ofTAP states at free energyf and temperatureT . The
Boltzmann partition function can then be approximated as the sum over allTAP solutions:

Z =
∫

df exp

(
− (f − T Sc(f, T ))

T

)
(8)
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Figure 1. free energy versus temperature; (1) free energy of the paramagnetic solution for
t > td, ftot for t < td; (2) free energy of the lowesttap states, with zero temperature energy
emin; (3) free energy of the highesttap states, corresponding toec; (4) an intermediate value of
e0 leads to an intermediate value off at any temperature; (5)feq(t); the difference between
curves (5) and (1) gives the complexityT Sc(feq(t), t).

which can be evaluated at largeN by a saddle-point method. At temperaturesT > Td,
with Td =

√
p(p − 2)p−2(p − 1)1−p/2, the Boltzmann measure is dominated by the

paramagnetic stateq = 0. At any T ∈ [Ts, Td], the Boltzmann measure is dominated
by a class ofTAP solutions, those of free energyf = feq(T ). Because of their extensive
complexity, this gives for the total equilibrium free energy:

ftot ≡ −T ln(Z) = feq(T ) − T Sc(feq(T ), T ) . (9)

The computation offeq is easily done [7, 14]. One finds thatftot is equal tothe paramagnetic
free energy in this range. BelowTs the lowest lyingTAP states dominate the Boltzmann
measure, leading toRSB. The situation is summarized in figure 1. Compared to a usual phase
transition, the situation is complicated by the existence of a finite complexity. Actually we
see that between the two transition temperaturesTs andTd, the situation is unclear: the total
equilibrium free energy seems to get two equal contributions, from the paramagnetic state
and from a bunch ofTAP solutions with non-zeroq. One can wonder if there is a phase
coexistence, or simply a problem of double counting in theTAP approach. This issue, which
is an important one if one aims at understanding the finite-dimensional behaviour of this
type of systems [6], can in fact be clarified within a dynamical approach as we now show.
Let us also mention that some purely static approaches also carry relevant information on
related issues [13, 19].

The TAP structure of states is usually not explored dynamically: indeed, the usually
studied out of equilibrium dynamics of the spherical p-spin model starts from a random
configuration, and never goes below the threshold corresponding to the upperTAP solutions.
This process has been studied in [15]: an interesting aging behaviour has been found at
temperaturesT < Td, but the energy density of the system only goes asymptotically to one
of the highestTAP states (the threshold states with angular energyE0 = Ec). Hence, it is
impossible to exploreTAP states via this kind of dynamics.

Here we will use a different approach for the dynamics [18, 19], where we start from
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a spin configuration which is picked up from a Boltzmann distribution at temperatureT ′,
and then let the system relax at temperatureT. We shall concentrate on the case where
T ′ ∈ [Ts, Td], which means that our initial configuration will belong to theTAP states with
free energyfeq(T

′). This will lead to the study of the relaxationinsideoneTAP state.
The relaxational dynamics at temperatureT is given by the Langevin equation:

dsi(t)

dt
= −∂H

∂si

− µ(t)si(t) + ηi(t) (10)

whereH is the Hamiltonian (1),µ is the Lagrange multiplier implementing the spherical
constraint, andηi is a Gaussian white noise with zero mean and variance 2T . The dynamics
is described by the behaviour of two-times correlation and response functions defined by

C(t, t ′) = 1

N

N∑
i=1

〈si(t)si(t ′)〉 r(t, t ′) = 1

N

N∑
i=1

∂〈si(t)〉
∂hi(t ′)

(11)

where〈·〉 is a mean over the thermal noise, and an overline denotes a mean over the coupling
constants.

Using the usual field-theoretical techniques for out of equilibrium dynamics [16], in
the large-N limit, it is possible to study the dynamics at temperatureT , starting from a
Boltzmann measure at temperatureT ′. In order to implement this initial sample dependent-
measure, it is necessary to introduce replicas [17–19] and to write dynamical equations
for two-times overlaps between replicasCab(t, t ′) = 〈sa(t)sb(t ′)〉, a and b being replica
indices. The equations obtained differ from the usual out of equilibrium ones (corresponding
to T ′ = ∞ [15]) by terms involving a coupling to the initial configuration, i.e.Cab(t, 0).
Besides, as noted in [19], the time evolution respects the initial replica-symmetric orRSB

structure of theCab, i.e. the static replica structure describing equilibrium atT ′.
For the p-spin model withT ′ > Ts the initial condition is replica symmetric, with

Cab(0, 0) = δab. Therefore, at all times we can writeCab(t, t ′) = C(t, t ′)δab. The obtained
equations for the correlation and response functions read[19], for anyT ′ > Ts, andt > t ′:

µ(t) =
∫ t

0
ds

[
p2

2
Cp−1(t, s) − p(p − 1)

2
Cp−2(t, s)

]
r(t, s) + T

− p

2T ′ C
p−1(t, 0) (1 − C(t, 0))

∂r(t, t ′)
∂t

= −µ(t)r(t, t ′) − p

2T ′ C
p−1(t, 0) r(t, t ′)

−p(p − 1)

2

∫ t

0
ds Cp−2(t, s)r(t, s)(r(t, t ′) − r(s, t ′)) (12)

∂C(t, t ′)
∂t

= −µ(t)C(t, t ′) + p

2

∫ t ′

0
ds Cp−1(t, s)r(t ′, s)

−p(p − 1)

2

∫ t

0
ds Cp−2(t, s)r(t, s)(C(t, t ′) − C(s, t ′))

− p

2T ′ C
p−1(t, 0) C(t, t ′) + p

2T ′ C
p−1(t, 0) C(t ′, 0) .

Let us examine the situation first forT = T ′ (this case was studied in [18];
supposinga priori equilibrium dynamics, they were able to connect it with theTAP

approach): since we start at equilibrium, we expect equilibrium dynamics satisfying both
time translation invariance (TTI) and the fluctuation dissipation theorem (FDT): C(t, t ′) =
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Ceq(t − t ′), r(t, t ′) = req(t − t ′) with req(τ ) = − 1
T

∂Ceq

∂τ
. Equations (12) reduce, with this

ansatz, to a single equation for the evolution ofCeq(τ ):

∂Ceq(τ )

∂τ
= −µ∞Ceq(τ ) − p

2T

∫ τ

0
du Cp−1

eq (τ − u)
∂Ceq(u)

∂u
(13)

whereµ∞ = T , andCeq(0) = 1. AboveTd, this equation describes the relaxation within
the paramagnetic state, with limτ→∞ Ceq(τ ) = 0. Below Td, the condition of dynamical

stability ∂Ceq(τ )

∂τ
6 0 leads to a non zero limitC∞ for Ceq(τ ) [8]; this limit is given by the

largest solution of
p

2T 2
Cp−2

∞ (1 − C∞) = 1 (14)

(the other non-zero solution is unstable with respect to the dynamics (13)). This value is
precisely the self-overlapq of the TAP states reflecting the statics atT , i.e. with free energy
feq(T ). This means that, for temperatures between the statical and the dynamical transition
temperatures, the thermalized system is trapped inside aTAP state, and not in a paramagnetic
state, for whichC∞ would be zero (as forT > Td). We can also exclude the possibility
of a coexistence, which would lead to some intermediate value: the paramagnetic state has
disappeared atTd, and the Gibbs state is formed by the bunch ofTAP solutions having the
suitable free energyfeq(T ), and a finite complexity density.

To get further insight, always starting from a thermalized configuration at temperature
T ′ ∈ [Ts, Td], we now study the dynamics at a temperatureT different fromT ′. In our study
of the dynamical equations (12), we have found numerically (using the type of algorithm
developed in [20]) and analytically that after a short transient the system reaches a stationary
regime whereTTI andFDT hold (see figure 2). The possibility of such a situation has already
been conjectured in [19], together with an interesting connection to the static approaches
developed in [13, 19].

Figure 2. p = 3 model, withTs ≈ 0.586, Td ≈ 0.612; numerical integration of equations (12)
for T ′ = 0.605, T = 0.6; we plot C(t, 0) versust (full curve), andC(t, t ′) versust − t ′ for
t ′ = 6, 12, 18, 24 (symbols); the dotted curve is the numerical integration of (15), and the dotted
curve is the value ofC∞ obtained by (16).
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In order to study this solution analytically, we introduce as previouslyCeq(τ ), req(τ ),
C∞ = limτ→∞ Ceq(τ ), µ∞ = limt→∞ µ(t), and l = limt→∞ C(t, 0), and obtain the
equation:

∂Ceq(τ )

∂τ
= −

(
µ∞ − p

2T
Cp−1

∞ + p

2T ′ l
p−1

)
Ceq(τ )

+p

2

∫ τ

0
du Cp−1

eq (u) req(τ − u) − p

2T
Cp

∞ + p

2T ′ l
p . (15)

Besides,µ∞, C∞ and l satisfy the following set of equations, obtained by takingt ′ = 0,
t → ∞ in (12), andτ → ∞ in (15):

µ∞ = T + p

2T
Cp−1

∞ (1 − C∞) − p

2T ′ l
p−1(1 − l)

lp−2 = 2T T ′

p(1 − C∞)

T C∞ = p

2T ′ l
p(1 − C∞) + p

2T
Cp−1

∞ (1 − C∞)2 (16)

and the energy reached dynamically at large times isE∞ = 1
2T

(C
p
∞ − 1) − lp

2T ′ .
It is then straightforward to check that the overlapC∞ and the energyE∞ are identical

to the values characteristic of certainTAP states at the temperatureT . These states are
precisely those obtained by following the equilibriumTAP states at temperatureT ′ (which
pick up a certain valueE0

T ′ of the angular energy) to temperatureT , by keeping the same
direction in ŝ space, but changing the overlap fromq(E0

T ′ , T ′) to q(E0
T ′ , T ).

From equation (15), it is possible to show that the relaxation ofCeq(τ ) is of the
form τ−3/2exp(−τ/τ0). The relaxation timeτ0 can also be computed, and has a quite
complicated expression that we do not reproduce here. It diverges for the highestTAP states
(corresponding toE0 = Ec). Of course, this exponential relaxation can only happen as
long as the followedTAP solution still exists at temperatureT : if T becomes larger than
Tmax(E

0
T ′), we observe a fast relaxation to the paramagnetic state, withC∞ = l = 0.

We have thus shown that theTAP solutions are real states, corresponding to a full
breaking of ergodicity: starting within aTAP state (which can be achieved by our trick of
using thermalized initial conditions at a temperatureT ′), one relaxes within this state with
a finite relaxation rate, and one can even follow this state when changing the temperature.
Besides, the Gibbs measure below the dynamical transition is made of a superposition of
TAP states, which are different ergodic components, totally separated from each other in the
dynamical evolution. The paramagnetic solution, valid aboveTd, disappears atTd. Note
that the way in which this occurs is not clear, and we leave this open question, which is
crucial for a better understanding of aging dynamics, for future work. SomeTAP states
exist as independent ergodic components even at temperaturesT ∈ [Td, TTAP]. They are not
seen in the usual dynamics because they are difficult to find: starting from random initial
conditions one stays in the big paramagnetic ergodic component. If one succeeds in starting
within a TAP state, one stays within this state even by rising the temperature aboveTd (but
below theTmax of this state). One should notice that the usual dynamics at a temperature
below Td, starting from a random configuration, only leads to a ‘weak ergodicity breaking’
[21, 15], where the self-overlap vanishes at very large time differences (much larger than
the waiting time). This is explained [15, 22] by the fact that the system, which was initially
in the (infinite temperature) paramagnetic state, does not find anyTAP state in a finite time,
but stays at energy density O(1) (going to zero ast goes to infinity) above the threshold. In
contrast, there is no sign of aging when one starts within aTAP state. This is in agreement
with some recent intuitive scenarios for aging [22, 23].
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